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An intersection between one-dimensional chiral channels functions as a topological current splitter. We
find that the splitting of a chiral zero-line mode obeys very simple yet highly counterintuitive partition laws
that relate current paths to the geometry of the intersection. Our results have far reaching implications for
electron beam splitter and interferometer device proposals based on chiral transport, and for understanding
transport in systems in which multiple topological domains lead to a statistical network of chiral channels.
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The existence of topological channels has been proposed
in a wide variety of systems including graphene mono- and
bilayers [1–7], topological insulators with lattice disloca-
tions [8], boron nitride crystals with grain boundaries [9],
superfluid 3He [10], and photonic crystals [11,12]. The
topological zero-line modes (ZLMs) that result from the
reversal of mass signs in a chiral two-dimensional gas with
quantized valley-Hall conductivity [2,3,10] can be viewed
as realizations of Dirac zero energy modes [13,14] in a two-
dimensional material. The valley Hall effect leads to
conducting edge states and also, when the mass parameter
varies spatially, to interior conducting states localized along
mass zero lines [1–3,7]. Provided that intervalley scattering
is weak the properties of these zero-line states are closely
analogous [1–3] to those of quantum spin-Hall insulator
edge states, and include in particular both chiral propaga-
tion and suppressed backscattering [1]. In this Letter, we
examine the current partition properties at zero-line inter-
sections [1,3], whether unintended in systems in which the
mass term results from a disorder potential or from
spontaneous symmetry breaking, or intended in devices
based on ZLM properties.
The zero-line chiral channel [1–5] pattern with a spatially

varying mass is schematically illustrated in Fig. 1(a). A mass
term leading to the valley Hall effect [15,16] can be produced
by a sublattice staggered external potential in monolayer
graphene [4,5] and, more practically, by a gate-controlled
interlayer potential difference in Bernal bilayer and ABC
stacked multilayer graphene [1–3,6]. Mass terms can also be
generated by spin-orbit coupling [17–19] and by electron-
electron interaction [20–24]. In the last case ZLMs appear
naturally at domain walls separating regions with different
local anomalous, spin, or valley Hall conductivities [25].

Chiral propagation implies that ZLMs can propagate
only in the direction which places negative masses either on
their left or right side, depending on valley. It follows, as
illustrated in Fig. 1(c), that there is no forward propagation
at a zero-line intersection; a propagating mode is split
between a portion that turns clockwise and a portion that
turns counterclockwise. These unusual transport properties
are potentially valuable for new types of electronic devices.
We have carried out quantum transport calculations for an
explicit model of intersecting ZLMs in order to discover the
rules for current partitioning at ZLM splitter. The system
we study is a π-band tight-binding model for monolayer
graphene with a position-dependent sublattice-staggered
potential constructed to form intersecting zero lines. The
zero lines are connected with four reservoirs labeled as left
(L), right (R), up (U), and down (D) in Fig. 1(b). For
simplicity, we consider the case where the U and D ZLMs
propagate vertically, while we vary the angle α between R
and D ZLMs, and the angle β between L and U ZLMs.
Smooth disorder potentials will tend to produce ZLM
intersections with α ¼ β, corresponding to zero lines that
are straight at the intersection point. The solid (blue) and
dashed (red) lines in Fig. 1(b) indicate the allowed chiral
propagation paths.
The numerical results reported on below are for a

π-orbital tight-binding Hamiltonian with nearest neighbor
hopping and a sublattice-staggered potential: H ¼
−t
P

hijic
†
i cj þ

P
i∈AUAic

†
i ci þ

P
i∈BUBic

†
i ci. Here, c†i

(ci) is a creation (annihilation) operator for an electron
at site i, and t ¼ 2.6 eV is the nearest neighbor hopping
amplitude [26]. For a sublattice staggered potential
the A and B sublattice energies are opposite, i.e.,
UAi ¼ −UBi ¼ λU0, where U0 measures the potential
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strength and λ ¼ � is a mass parameter that specifies the
sign of the valley Hall effect in each quadrant. In all our
simulations, the potential amplitude was chosen to be
U0=t ¼ 0.05. The ZLMs are confined to the lines cross
which λ changes sign. The ZLM wave function tails spread
into the bulk with a decay length proportional to the inverse
of the mass U0 [1,3].
Although our study has, for computational convenience,

been carried out using a monolayer graphene model, we
have confirmed that similar conclusions apply to ZLMs in
bilayer graphene. The bilayer case is more interesting
experimentally, because any desired mass pattern can be
written with patterned external gates. Our transport calcu-
lations are based on the Landauer-Büttiker formalism [27]
and recursively constructed Green’s functions [28,29]. The
conductance from lead q to lead p is numerically evaluated
from Gpq ¼ ðe2=hÞTr½ΓpGrΓqGa�, where e is the electron
charge, h is the Planck’s constant, Gr;a are the retarded and
advanced Green’s functions [27], and Γp is a linewidth
function describing the coupling between lead p and the
central region. The propagation of ZLMs incoming from
lead p is effectively illustrated by plotting a map of its
contribution to the local density of states at an energy ε in
the gap: ρpðr; εÞ ¼ 1=2π½GrΓpGa�rr, where r is the real
space coordinate. It is noteworthy the conductance doubles
if the spin degree of freedom is included.
The central scattering region in our calculations is

rectangular with size nx ¼ 94 and ny ¼ 432 as explained
more fully in the Supplemental Material [31]. The valley
label of a state is of course not a good quantum number
for ZLMs and valleys are most strongly mixed when their
wave vector projections in the propagation direction are
identical. For energies inside the gap this coincidence
happens only for propagation in the armchair direction
[1,2,4,9]. However, numerical calculations have shown a
remarkable absence of intervalley scattering at sharp
turns in the zero line or at ZLM intersections [1] except

in a narrow energy range very close to the intervalley
avoided crossing gap centered on ε=t ¼ 0.00. For the
results shown below we have chosen ε=t ¼ 0.01 to avoid
this energy range; the chirality of the ZLMs is then very
well defined.
In a four-terminal ZLM splitter device [see Fig. 1(b)],

there are in total twelve distinct interterminal conductance
values. The number of independent conductances is
reduced to six in time-reversal symmetric systems since
Gpq ¼ Gqp. For chiral transport, forward scattering
and back scattering are absent at a ZLM intersection,
further reducing the number of independent parameters.
Furthermore, current conservation implies that Gpr þ
Gqr ¼ G0 ¼ e2=h for any incoming lead r, where p
and q are the labels of the two neighboring leads. It follows
that

GLU ¼ GRD & GRU ¼ GLD; (1)

and thatGRU þ GRD ¼ e2=h, leaving only one independent
parameter for the entire four-terminal system. In a ZLM
splitter with zero backscattering and perfect chiral current
filtering, transport is completely characterized by specify-
ing how the incoming current at an intersection is parti-
tioned between the clockwise and counterclockwise
rotation outgoing directions. The partition law must be
the same for all incoming channels. The above relations
were numerically verified for a ZLM current splitter with
α ¼ β ¼ 90° in Ref. [1] and we have now numerically
verified that they are true for arbitrary values of the lead
angles α and β (See the Supplemental Material [31] for
further details).
In the following we focus on the partitioning, charac-

terized by conductancesGUR andGDR, of a current incident
along the R lead between U and D outgoing channels. We
first derive an approximate expression which explains why
the current often follows the path requiring a larger rotation

FIG. 1 (color online). Current partition at zero-line intersections: (a) Staggered sublattice-potential, and hence valley Hall conductivity,
sign as a function of position. Sign changes define zero-line paths. (b) Schematic illustration of a four-terminal graphene sample
containing zero lines. The “þ” or “−” labels specify the sign of the staggered sublattice potential in each region. Left (L), right (R), up
(U), and down (D) leads are connected to a rectangular central scattering region. The U and D zero lines are fixed along the vertical
direction while the angles α and β specify the R and L zero-line directions. The thin solid lines in black denote zero lines. The blue solid
and red dashed arrows represent allowed chiral propagation paths. (c) ZLM local density of states distribution for modes incident from
lead R for α ¼ 90°; 60°; 120° at fixed β ¼ 90°.
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angle [See Fig. 1(c)], and why current partition is depen-
dent to a good approximation only on the junction
geometry. Our qualitative argument is based on the proper-
ties of ZLMs in systems with two or more nearby parallel
zero lines [30,31] separating regions with opposite signs of
masses. Coupling between ZLMs traveling in opposite
directions in this case leads to gaps in the traveling wave
spectrum and to exponential decay along the zero line at
energies in the gap. Analytic results can be obtained by
matching constant mass solutions of the two-dimensional
Dirac equation across zero lines at which the mass changes
sign. For constant positive mass between and constant
negative mass outside two zero lines separated by a
distance d and oriented along the ŷ axis, we obtain the
following compact expression for the wave function decay
rate κx near the Dirac point:

κy ¼ κ0 expð−κxdÞ;

where κy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ20 − κ2x

p
, κ0 ¼ Egap=ð2vÞ, v is the Fermi

velocity, and Egap is the energy gap in the limit of
d → 0. These equations imply a rapid crossover between
two different regimes as a function of d. For κ0d ≪ 1,
κy ∼ κ0, and κx ∼ ð2κ0dÞκ0. The wave function amplitude
decays rapidly along the channel, but is laterally extended.
For κ0d ≫ 1, on the other hand, κx ∼ κ0 and
κy ∼ κ0 expð−κ0dÞ. In this limit, the wave functions are
strongly localized near the zero lines and have negligible
decay along the channel. Similarly, three zero-line modes
are strongly coupled when they are all separated by much
less than κ−10 . In this case, a single mode survives, which
propagates in the majority travel direction and has weight
equally partitioned between the two majority travel zero
lines approximately. When four zero-line modes are sep-
arated by much less than κ−10 , the most slowly decaying
modes weigh incoming and outgoing channels equally
approximately.
We can apply these results to a ZLM approaching a

junction along a zero line. The attenuation rate of the
probability density implies a rate of scattering to an
outgoing wave exiting the junction region along another
zero line. As illustrated in Fig. 2, at a distance r from the
junction, the separation between an adjacent pair of ZLMs
is dAB ¼ 2r sinðθAB=2Þ, where θAB (A;B ¼ U;R;D; L) is
the angle between the A and B zero lines. At a given r, the
local electronic structure can be approximated by account-
ing for the lateral separation between incoming and out-
going paths [See Fig. 2(b)]. In Fig. 2(c), we illustrate the
evolution of the band structure near valley K for r varying
from 40 to 10 nm at α ¼ 150°. In the limit of small r, a gap
starts to open. For r < 10 nm there are no propagating
modes at energies close to the Dirac energy as anticipated
from the discussion above.
Consider now the case of a ZLM incident from the right.

We assume without loss of generality that α > 90°, i.e., that

θUR < θDR. Then for β > 180° − α, θUR < θLU. It follows
that with decreasing r, the incoming R channel is strongly
coupled to the outgoing U channel, before the U channel is
strongly coupled to the L channel. This asymmetric
coupling situation persists for sin−1ðθLU=2Þ < 2κ0r <
sin−1ðθUR=2Þ. Along this part of the path, electrons enter-
ing along the R channel are scattered to the U channel. For
2κ0r < sin−1ðθLU=2Þ, all three channels are strongly
coupled and the incoming mode begins to propagate
without reflection, carried symmetrically between R and
L channels. Asymmetric reflection occurs only along the
outer segment. It follows that

GUR ∼
G0

2
ð2 − PTÞ; and GDR ∼

G0

2
PT; (2)

where the probability of transmission through the asym-
metric coupling region is approximated through

U 

D 

R 

L 
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r 
+ 

+ 
+ + 
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+ 

FIG. 2 (color online). Origin of the sharp-turn-favored partition
rule: (a) Schematic representation of a straight zero-line inter-
section. The lateral separations between paths supporting ZLMs
propagating in opposite directions decrease linearly as distance r
from the junction decreases. For α → 0 and α → 180°, the
incoming ZLM is strongly coupled to the adjacent outgoing
ZLM over a large range of r and is likely to be reflected by
approximately 180° before it reaches the junction. (b) At a given
r channels A and B are separated by 2r sinðθAB=2Þ were θAB is
the angle between A and B zero lines. The local electronic
structure at each separation r can be approximated by one with
colinear ZLMs. (c) Band structure near valley K for the one-
dimensional mass variation illustrated in panel (b) for the cases
of α ¼ 150° and r ¼ 40; 30; 20; 10 nm. The red dashed line
indicates the energy level E ¼ 0.01t for which we have
performed our transport calculations. For r ≲ 10 nm there are
no propagating modes at this energy and electrons incoming
along R must be scattered to U. (d) Wave functions along the
four zero lines for radii r ¼ 40; 30; 20 nm.
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PT ∼ exp½−2κ0ðr>0 − r<0 Þ�
¼ exp½sinðθLU=2Þ−1 − sinðθUR=2Þ−1�; (3)

with r<0 ¼ ½2κ0 sinðθLU=2Þ�−1 and r>0 ¼ ½2κ0 sinðθUR=2Þ�−1,
where the prefactor 1=2 in Eq. (2) leads to equipartition
when PT ¼ 1 for r>0 ¼ r<0 , consistently with the relation
G0 ¼ GUR þGDR. Note that for θUR → 0, this probability
vanishes and the incoming R ZLM is almost certainly
scattered to the outgoing U ZLM.
For β < 180° − α, on the other hand, the U channel is

already strongly coupled to the L channel when it is
coupled to an incoming R ZLM. In this case scattering
to theU outgoing channel can occur only when its coupling
to the L channel is weak. It follows that

GUR ∼
G0

2
PT; and GDR ∼

G0

2
ð2 − PTÞ: (4)

Note that these approximate conductances depend only on
geometry, and are in good agreement with the numerical
results summarized in Fig. 3(a). We emphasize that Eqs. (2)
and (4) are approximate. They apply accurately only at
energies close to the middle of the bulk energy gap. In our
simulations, we have assumed that the potentials change
abruptly at zero lines. When the potential changes smoothly
the partition law changes slightly, but the counterintuitive
characteristic, i.e., current paths tend to favor sharp turns,
still holds [32].
Our results show a remarkable robustness to disorder

which we modeled through site potential fluctuations given
by Hdis ¼

P
iωic

†
i ci with ωi uniformly distributed in the

interval of ½−W=2;þW=2�, where W characterizes the

disorder strength. Our simulations shown in Figs. 3(b)
and 3(c) suggest a remarkable robustness of our conclu-
sions up to disorder strengths that are substantially larger
than the bulk band gap Δ=t ¼ 0.1, suggesting promising
prospects in experiments.
Since there are presently no practical techniques for

imposing staggered sublattice potentials in single layer
graphene, other closely related systems may ultimately be
of greater experimental interest. In Bernal stacked bilayer
graphene, for example, a ZLM splitter can be realized by
using gates to achieve perpendicular electric fields which
vary in sign spatially. Another possibility is 2D honeycomb
photonic crystals, in which the Dirac points have been
experimentally observed and sublattice staggered potentials
can be realized by choosing different diameters for the
cylinders which form the structure or by varying the
dielectric material used.
In summary, when intervalley scattering can be

neglected, transport along the zero lines of a sublattice-
staggered potential in graphene is chiral, requiring travel in
a direction which keeps positive masses on either the left or
the right, depending on valley. We have used the Landauer-
Büttiker formula and recursively constructed Green’s
functions to examine how chiral currents are partitioned
between available outgoing leads at a ZLM intersection.
We find that at energies near the middle of the bulk gap our
numerical results for the dependence of the current partition
on ZLM geometry are approximately described by a simple
partition law specified in Eq. (2), and that the influence of
disorder on this law is weak. The helicity of ZLM provides
a new mechanism for allowing or blocking currents and
may find applications in alternative designs for nanoelec-
tronic devices or in enabling electron quantum interferom-
etry [33] in a new setting. We have explored, for the first
time to our knowledge, the geometry-dependent current
partition laws at the intersection of two zero lines. It will be
interesting to extend our present studies to more general
parameter spaces and to look for similarities and
differences with respect to other systems with chiral
one-dimensional transport channels including photonic
crystals, quantum anomalous Hall and quantum Hall effect
systems, and chiral superconductors.
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